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Popular Summary 

Quality of aerosol retrievals and atmospheric correction depends 
strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM 
algorithms developed for AVHRR and MODIS use the latest sensor 
measurements of spectral reflectance and brightness temperature and 
perform processing at the pixel level. The algorithms are threshold- 
based and empirically tuned. They don't explicitly address the 
classical problem of cloud search, wherein the baseline clear-skies . 
scene is defined for comparison. Here, we report on a new CM algorithm 
which explicitly builds and maintains a reference clear-skies image of 
the surface (refcm) using a time series of MODIS measurements. The new 
algorithm, developed as part of the Multi-Angle Implementation of 
Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that 
clear-skies images of the same surface area have a common textural 
pattern, defined by the surface topography, boundaries of rivers and 
lakes, distribution of soils and vegetation etc. This pattern changes 
slowly given the daily rate of global Earth observations, whereas 
clouds introduce high-frequency random disturbances. Under clear skies, 
consecutive gridded images of the same surface area have a high 
covariance, whereas in presence of clouds covariance is usually low. 
This idea is central to initialization of refcm which is used to derive 
cloud mask in combination with spectral and brightness temperature 
tests. The refcm is continuously updated with the latest clear-skies 
MODIS measurements, thus adapting to seasonal and rapid surface 
changes. The algorithm is enhanced by an internal dynamic land-water- 
snow classification coupled with a surface change mask. An initial 
comparison shows that the new algorithm offers the potential to perform 
better than the MODIS MOD35 cloud mask in situations where the land 
surface is changing rapidly, and over Earth regions covered by snow and 
ice. 
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Abstract. Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy 
of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and 
MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and 
perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. 
They don't explicitly address the classical problem of cloud search, wherein the baseline clear- 
skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly 
builds and maintains a reference clear-skies image of the surface (refcm) using a time series of 
MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation 
of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images 
of the same surface area have a common textural pattern, defined by the surface topography, 
boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly 
given the daily rate of global Earth observations, whereas clouds introduce high-frequency random 
disturbances. Under clear skies, consecutive gridded images of the same surface area have a high 
covariance, whereas in presence of clouds covariance is usually low. This idea is central to 
initialization of refcm which is used to derive cloud mask in combination with spectral and 
brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS 
measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by 
an internal dynamic land-water-snow classification coupled with a surface change mask. An initial 
comparison shows that the new algorithm offers the potential to perform better than the MODIS 
MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth 
regions covered by snow and ice. 

1. Introduction 

Cloud mask (CM) is a primary science algorithm that precedes detailed analysis of cloud, aerosol 
and land surfacelocean parameters from the global observing space borne sensors. Accuracy of 
cloud detection has a significant impact on aerosol retrievals and atmospheric correction. At the 
global scale, undetected clouds introduce a positive bias in aerosol concentration and increase land 
albedo, whereas regional and seasonal biases correlated with cloudiness affect spatial distribution 
and temporal changes of these parameters. Given strong interdependence between human induced 
land changes, aerosols and clouds, accurate cloud identification has a growing importance in our 
understanding of the Earth system, and the role of anthropogenic factors in the modern climate and 
its changes. 

The heritage cloud mask algorithms for the low-orbiting sensors, including the AVHRR CLAVR 
[McClain, 19931 and MODIS algorithm [Ackerman et al., 1998; 20061, use the latest sensor 
measurements of spectral reflectance and brightness temperature and perform processing at the 
pixel level. In these cases, the algorithms lack apriori knowledge about the surface and have to 
deal with large uncertainties caused by wide natural variability of both land surface and clouds. 



Even identification of clear pixels in cloud-free conditions is challenging when measurements do 
not exhibit explicit signatures of the surface, such as spectral signatures of dense vegetation or of 
deep water. Due to tremendous variability of clouds, their detection has always been problematic 
over brighter surfaces, especially over snow. Because of similarity of spectral reflectance between 
the snow and snowlice clouds, and temperature inversions frequent in the low troposphere in 
wintertime, no particular set of spectral reflectance - brightness temperature tests may guarantee a 
success over snow and ice. 

On the other hand, contemporary polar-orbit global observation imagers, such as AVHRR, 
MODIS, or future VIIRS, provide or will provide a daily global view of the Earth at equator with 
multiple observations per day for the mid-latitude and polar regions. This opens a possibility to 
add temporal and spatial dimensions into the cloud mask processing. For example, with a high 
frequency of observations, the land surface can be considered as a static or slowly changing 
background contrary to ephemeral clouds, which offers a reliable way of developing the 
"comparison target" for the CM algorithm. The modern memory and processing power of 
computers allow deriving and storing a sufficient volume of ancillary information about every 
surface pixel in order to optimize performance of cloud masking globally. An early example of 
such an approach is the ISCCP CM algorithm [Rossow and Garder, 19931 developed for 
geostationary platforms. It builds the clear-skies composite map from the previous measurements 
and infers CM for every pixel by comparing current measurement with the clear-skies reference 
value. The uncertainty of the reference value, caused by the natural variability and sensor noise, is 
directly calculated from the measurements. 

We present a next step in evolution of this idea - a new CM algorithm working with the time 
series of MODIS measurements, and developed as a part of the Multi-Angle Implementation of 
Atmospheric Correction (MAIAC) algorithm [Lyapustin and Wang, 2007a, b]. It uses covariance 
analysis to build a reference clear skies image (refcm) and to accumulate a certain level of 
knowledge about the surface and its variability thus constructing a rather comprehensive 
comparison target for the cloud masking. The new algorithm has an internal surface classifier, 
producing dynamic land-water-snow (LWS) mask, and a surface change mask. These are an 
integral part of M I A C  guiding both cloud masking and further aerosol-surface reflectance 
retrievals when the surface changes rapidly as a result of fires, floods or snow falllablation. The 
cloud mask generated by the CM algorithm is updated during atmospheric correction, which 
makes it a synergistic component of MAIAC. The atmospheric correction uses a time series of 
MODIS measurements, acquired at different angles, to retrieve a surface bi-directional reflectance 
factor (BRF). It requires consistency between the latest retrieved BRF and the previous solution 
unless land surface change has been detected. This complex approach is found capable of catching 
sub-pixel and semi-transparent clouds that are difficult to detect otherwise. 

Utilizing the time series in operational processing of remote sensing data is a novel concept 
although prototypes have been in existence, such as the MODIS BRFIalbedo algorithm based on 
accumulation of 16-day time series of gridded MODIS surface reflectance data [Schaaf et al., 
20021. In the MAIAC algorithm, use of the time series of MODIS data is key to all major 
components of processing, including cloud mask, joint aerosol-surface retrievals, and atmospheric 
correction. In order to arrange a time series processing, MAIAC first grids MODIS level IB (LIB) 
calibrated and geolocated data to a regular 1 km grid [ Wang and Lyapustin, 20071, splits them into 
600 km Tiles and places the new Tile in the Queue, which can hold up to 16 days of previous 
measurements. The size of Tile is scaled with the operational memory of our workstation, and it 



can be set to the value of 1000 km used in the MODIS operational processing. Further MAIAC 
processing uses both individual grid cells, interchangeably called pixels here, and fixed-size 
(25x25 km2) areas, called blocks. In order to organize such processing, we developed a framework 
of C++ classes and structures (algorithm-specific Containers) to store Tiles of MODIS data and 
dynamically update the Queue. The class hnctions are designed to easily handle processing in the 
time-space coordinates, for example at the pixel- vs block-level, and for a single (last) day of 
measurements vs for all available days in the Queue, or for a subset of days passing certain filters. 
The data storage in the Queue is organized in a very efficient way using pointers, which avoids 
physically moving the previous data in memory when the new data arrive. 

A section 2 describes the algorithm constructing the reference clear-skies image (refcm). Section 3 
and Appendix B present an overall decision logic in cloud masking and provides the necessary 
technical detail. A dynamic surface classification algorithm is discussed in section A. Examples of 
the MAIAC cloud mask for 50x50 km2 subsets of MODIS TERRA data for different global 
locations are given in section 4. This section also shows several examples of a large-scale 
comparison of MAIAC CM with the cloud mask of the operational MODIS algorithm (MOD35). It 
should be mentioned that this paper describes the results of the MAIAC CM algorithm alone, not 
enhanced by additional filtering and cloud shadow detection of the atmospheric correction 
algorithm, which will be described separately. The paper concludes with a Summary. 

2. Building Reference Clear Skies Image 

The clear-skies images of the same surface area have a common textural pattern, defined by the 
surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This 
pattern changes slowly compared with the daily rate of global Earth observations. Clouds 
randomly change this pattern, which can be easily detected by covariance analysis. The covariance 
is a metric showing how well the two images X and Y correlate over an area of NxNpixels, 
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A high covariance of two images usually implies cloud-free conditions in both images, whereas 
low covariance usually indicates presence of clouds at least in one of the images. A rapid surface 
change or significant variation of aerosol density in the area may also reduce covariance. Because 
covariance removes the average component of the signals, this metric is equally successful over 
the dark and bright surfaces and in both clear and hazy conditions if the surface spatial variability 
is still detectable from space. 

The core of the MAIAC CM algorithm is initialization and regular update of the reference clear- 
skies image for every block. The refcm is initially built from the pair of images for which 
covariance is high, and caution is exercised to exclude correlated cloudy fields. The algorithm 
calculates a block-level covariance between the new Tile and the previous Tiles, moving 
backwards in the Queue until either the "head" of Queue is reached, or the clear conditions are 
found. The latter correspond to high covariance (cov20.68) and low brightness temperature 
contrast in the block for both days, ABT=BTm,- BTmin<Al. The initial value of threshold Al is 
currently defined as A1=7 K for pure water blocks, and A1=25+dT(h) K for pure land or mixed 
land-water, land-snow, or land-water-snow blocks. Factor dT(h) accounts for the surface height 
variations in the block, and is defined for an average lapse rate, dT(h)=O.O045(hm,-hmin), where h 



(km) is surface height over the sea level. Once refcm is initialized, the algorithm begins to use the 
block-specific value of BT contrast. 

When snow is detected, the high covariance threshold is slightly reduced from 0.68 to 0.65 in 
order to accommodate for a rapid change of snow cover at mid-latitudes, where snow 
accumulation is usually low and day-to-day variations of reflectance during wintertime can be 
enormous. 

After initialization, the algorithm uses refcm to compute covariance with the latest measurements. 
Once the clear conditions are found, refcm is updated. With this dynamic update, the refcm adapts 
to the gradual landcover changes related to the seasonal cycle of vegetation. The rapid surface 
change events (e.g. snowfall/ablation) are handled through repetitive re-initialization which is 
performed each time when covariance of the latest Tile with refcm is found to be low (see section 
3). 

2.1 Algorithm Technical Detail 

The MAIAC CM algorithm uses seven 500 m resolution MODIS bands B 1 -B7 and a 1 km thermal 
band B3 1 (Table 1). As mentioned earlier, data are initially re-projected and gridded to 1 km grid. 

1. The covariance analysis is currently performed for MODIS band B1 (0.645 pm). We have 
extensively studied the use of B6 (1.629 pm) and B5 (1.242 pm). B6 was initially our band of 
choice because it has low molecular absorption and aerosol extinction, as well as high land surface 
variability and spatial contrasts. We have conducted an independent covariance analysis for 1 year 
of MODIS TERRA data subsetted for 50x50 km2 areas around 156 AERONET [Holben et al., 
19981 locations globally. From considered MODIS bands B2 (0.856 pm), B5, B6 and B7 (2.1 13 
pm), band B6 provided by about 10% more of the high covariance cases. On the other hand, this 
band has not been working properly on MODIS AQUA, and it has developed occasional problems 
since 2006 on MODIS TERRA. We have also found that bands B5 and B6 often cannot detect 
significant spatial aerosol variability or variable semi-transparent clouds. Spatial uniformity of 
aerosols within the block area is one of the major requirements of MAIAC inversion method, and 
B 1 was found to provide a better overall performance. 

2. The size of a block is currently selected as 25x25 pixels (km2) for two reasons. First, this size is 
large enough to capture a variety of spatial variability scales (geologic, topographic, ecologic etc.) 
required for covariance analysis. Second, it is sufficiently large to capture surface variability at the 
edge of scan where the MODIS pixel size grows to ~ 2 x 4  km2 for I km2 nadir pixels. On the other 
hand, the success rate of covariance algorithm to select clear blocks in conditions of broken 
cloudiness is higher for smaller blocks. The MISR CM algorithm [Diner et al., 19991, which 
extensively uses covariance analysis, works with the block size of 17.6 km. We plan to evaluate 
the global performance of cloud mask for smaller blocks 15-25 km, and select the optimum for 
operational application. 

3. In order to account for the effects related to the scan angle variation, e.g. pixel size growth, 
surface BRF effect or reduction of contrast at higher view zenith angles (VZA), two reference 
clear-skies images are maintained by the algorithm, refcml for VZAmO-45" and refcm2 for 
VZA=45"-60". 



4. In addition to the clear-skies image, the refcm structure stores the maximal value (refcm.rl,,) 
and the variance (refcm.~) of reflectance for the block. The algorithm has a separate allocated 
storage at the Queue level for some parameters of every pixel and block from the previous data or 
retrievals. One such parameter is the brightness temperature contrast (q.ABT=BT,,-BT,,,) stored 
for every block. MODIS data show that the BT contrast is a rather stable metric of a given land 
area in clear conditions. For the pure land blocks, containing no water or snow pixels, the BT 
contrast is usually low (1-6 K) for flat terrains at MODIS 1 km resolution of thermal bands. It may 
increase, sometimes significantly (10-20 K) when the block is a mixture of land, water or snow 
pixels. In partially cloudy conditions the BT contrast increases because BTmin is usually lower over 
clouds. 

5. The algorithm keeps a two-level cloud mask, the standard mask at the grid (1 km) resolution 
(CM), and another one at the block resolution (CM-COV). The CM-COV mask is used to efficiently 
control the algorithm flow for refcm re-initialization, and during aerosol retrievals and 
atmospheric correction. 

6. The allowed values of cloud mask are clear (CM-CLEAR, CM-CLEAR-WATER, 
CM-CLEAR-SNOW), indicating surface type, possibly cloudy (CM-PCLOUD), and confidently 
cloudy (CM-CLOUD). Two more values of cloud mask are CM-SHADOW for pixels defined as a 
cloud shadow, and CM-GREY representing 1 dilated pixel on cloud edges, which is used for 
aerosol retrievals and atmospheric correction. The covariance component of our algorithm, which 
offers a direct way to identify clear conditions, renders another commonly used value of cloud 
mask - "possibly clear" - redundant. 

7. A high covariance between two days alone does not guarantee clear conditions. Clouds "leak 
into refcm in a number of different and often unimaginable ways, especially over snow. From an 
extensive analysis of MODIS data over the world, from Amazon region to Greenland, we 
designed a set of filters that achieve a rather satisfactory selection of clear conditions: 

Prior to calculating covariance between the last Tile (L) and the previous Tiles (k=L-I, . . . 0) 
stored in the Queue, the following conditions are used to reject any of the Tiles k for a given 
block: 
- High BT contrast, which usually indicates clouds: ABTk > min(q.ABT+lS, 25) (K). 
- Small time difference between observations: t~ - tk < 200 min. This test was introduced to 

exclude correlation of the same cloudy fields on stagnant days with zero or very low winds. 
- The number of pixels which passed the snow test is significantly different between observations 

L and k. 

When no snow is detected by the snow test in both Tiles L and k and the calculated covariance is 
high, the following two tests also serve as a rejection condition: 
- The difference of the block-average TOA reflectances should not be too high: 

I(r1,) - (rl,)l> 0.18. This test filters infrequent cases when bright continuous clouds correlate 

spatially with much darker clear scene. 
- The maximal reflectance of the block should not significantly exceed the refcm value: 

r l , ,  L > refcm.rl,,+O.l OR rl,,, k > refcm.rl,,+O. 1. 
If refcm.rl,, is not defined, as during refcm initialization, the condition states that both Tiles 
should not be simultaneously bright (rl,,, ~ , k  N.2) and cold (BTmin, ~,k<277K), which is 
indicative of clouds. 



- Overcast conditions with snowlice clouds producing high covariance are ubiquitous over the 
tropical regions and at northern latitudes, especially in winter. These are filtered by our snow 
classification algorithm (see Appendix A) which requires high covariance between observations 
and a significant number of pixels passing snow test on both days in order to mask a pixel as snow 
for the first time. To avoid snow detection over tropics during the rain season according to this 
logic, we use common sense that a relatively low temperature should establish for some period of 
time before snowfall. On the contrary, if the surface was warm (BT,d288K) during any of the 
previous clear or partially clear days, when the ground brightness temperature (BTG) can be 
established, then most probably we have the case of spatially correlated snowlice clouds. The 16- 
day time series of measurements usually provides an assessment of BTG for any given block from 
previous days. 

- Finally, we are using a "sigma" test to filter Tiles with significantly higher or lower spatial 
variability than that of a clear-skies surface: 

loL - refcm.01 >Ao OR lo, - refcm.ol >Aa, where Aa=max(refcm.a, 0.01 5). 

This test is particularly useful over very homogeneous snow-covered regions lacking terrain 
features, such as inner regions of the Greenland ice sheet, where clouds usually have significantly 
higher amplitude of spatial variation. 

According to testing performed, the developed set of filters ensures a reliable initialization or re- 
initialization of the reference clear-skies image of the surface globally with the low percentage of 
errors. However, this set of filters will continue to be revised as new exceptions are found. 

3. CM Algorithm Flowcharts 

The central idea of MAIAC CM algorithm is to use the reference clear-skies image of the surface 
(refcm) and covariance analysis to identify clear skies and cloudy blocks, which are usually 
characterized by high and low covariance, respectively. The low covariance of the latest Tile with 
refcm may be caused by presence of clouds, dense inhomogeneous aerosols, or a rapid surface 
change on a scale comparable to the block size. For regular surfaces, not covered by snow, cloud 
detection in the low-covariance blocks is based on a simple postulate that clouds are usually colder 
and brighter than the surface. The reference surface reflectance for every pixel is provided by the 
refcm clear-skies image, whereas an estimate of the BTG comes either from the clear land pixels 
detected by spectral tests for a given block, or fiom the cloud-free neighbor blocks, identified by 
the high covariance. Cases of surface change are processed with the help of Land-Water-Snow 
mask (mask-LWS) and land change mask (mask-Change) derived dynamically by an internal 
surface classifier and stored in the Queue memory. 

The general flowchart of CM algorithm is shown in Figure 1. Here, rectangles represent separate 
functions, diamond shapes stand for the separate subroutines (algorithms), and round-comer 
rectangles indicate decision (branching) points. The thick arrows show the points of exit. 

1. As a first step, spectral tests are performed for each block to detect clear vegetated, water and 
possibly snow pixels as described in Section 4. These tests are used to initialize and update pixel- 
level surface classification and change masks (mask-LWS, mask-Change). The detected clear 
vegetated and water pixels are used to calculate brightness temperature of the ground and of the 
water for the block (BTG, BTw), which are required in further analysis. 



2. Next, a Cold/Thick cloud test is performed for each pixel of the Tile. The Cold test is designed 
to find clouds which are rather cold as compared to either the BTG if the latter is available, or to 
the maximal BT found among a given block and its four closest neighbors. This test is formulated 
as follows: 

r l  > 0.15 AND BT < BTo-A, 2 CM-CLOUD. 
where BTo= BTG, A=15K if BTG is defined, or BTo= BT,,, A=20K if BTG is undefined. This is a 
relative test, which does not use an absolute BT threshold, and thus can be used with the h l l  range 
of temperatures from the poles to the equator. The threshold A is selected to be high enough to 
avoid a possible error due to temperature inversions in the boundary layer. 

The Thick cloud test is designed to detect spectrally neutral bright and thick clouds. Usually, 
reflectance of such clouds decreases slowly with wavelength within spectral range of 0.4-1.25 pm. 
The test is formulated as: 

rl  > 0.2 AND r3 > r l  AND r l  > 1-5, CM-CLOUD 
where MODIS bands 3 and 5 represent wavelengths of 0.47 pm and 1.24 pm. 

If the pixel passed the snow test, neither of the described cloud tests is used, and the algorithm 
delays decision till the covariance analysis, which may confirm cloud-free conditions and snow on 
the surface. 

The cloud mask, generated by these tests, can be overwritten later if high covariance is found. 

3. Further processing path depends on whether refcm has been initialized. If not, then the 
algorithm tries to initialize refcm as described earlier in sec. 2 (module initRefcm). During 
initialization, the algorithm consecutively computes covariance of the last measurements with each 
of the earlier images of the Queue, until the high covariance is found and clear conditions in both 
images are confirmed. If initialization is unsuccesshl because of clouds, the algorithm runs a 
backup pixel-level algorithm cloudMask1. 

If refcm was initialized earlier, then the algorithm calculates the covariance between the new 
measurements and the refcm image, and performs further processing depending on the value of 
covariance (modules CM-highCov and CM-IowCov). The algorithm pursues a conservative 
strategy admitting that sometimes partially or completely cloudy images can bypass filters of 
initRefcm() and update refcm. If this happens, the latest cloud-fi-ee image will not correlate well 
with refcm. To reduce such possible errors, our algorithm attempts to re-initialize refcm with latest 
measurements each time the calculated covariance with existing refcm is found low. This approach 
also helps to re-initialize refcm when the surface reflectance changes rapidly. 

Each of modules CM highCov, CM lowCov, cloudMask1 is producing cloud mask for the new 
tile. Module i n i t ~ e f c ~ ~ r o d u c e s  cloud mask only if it fmds high covariance. The refcm image and 
block-parameters of the refcm structure are updated in the modules initRefcm and CM-highCov. 
The surface classification scheme and algorithms implemented in modules CM-highCov and 
CM-lowCov are described in the Appendix. 

4. Performance of MAIAC CM Algorithm 

Performance of the cloud mask algorithm. has been tested using 1 year (2003) of MODIS TERRA 
data subsetted for 156 AERONET locations worldwide. The data were received in the swath 
format with resolution aggregated to 1 km in all bands for the subset area of 50x50 km2. Before 



processing, we re-projected and gridded these data to 1 km grid using the nearest neighbor 
method. 

The analysis was conducted by a visual comparison of the generated cloud mask against the true 
color MODIS RGB image and, if required, the brightness temperature image. Figure 2 gives an 
illustration of the algorithm performance for the area centered at the NASA Goddard Space Flight 
Center (Greenbelt, Maryland, USA) for different seasons of the year. Each column contains 20 
consecutive images covering the Julian day period shown on the top. The periods covered are not 
even because data were missing for some days while on others the area could be observed twice 
from different orbits. The reproducible spatial pattern of the surface on cloud-free days, clearly 
visible in these image sequences, is a key to the success of the developed algorithm. 

The first two columns of images show the initialization stage of the covariance algorithm. In this 
demonstration, module CloudMaskl was turned off. Blocks 2 and 3 with the largest contrast are 
initialized first, and block 4 with the lowest contrast is initialized last. The cloud-free blocks are 
identified accurately by the covariance analysis, and performance of algorithm is robust regardless 
of the surface brightness. For example, the first three columns show rather accurate mapping of 
clear conditions over variable snow. Generally, the algorithm tends to overestimate cloudiness 
during snowmelt when surface changes are rapid and no reliable comparison target can be 
established based on previous measurements. It achieves best performance when the surface 
condition is stable, for example over deserts and arid regions, or, in northern latitudes, in summer 
months or during winter with stable snow cover. The last two columns of Figure 2 show a reliable 
detection of different types of clouds in summer and autumn. 

To gain insight on the large-scale algorithm performance, we used the 2004-2005 MODIS 
TERRA data for northeastern USA, Southern Africa (Zambia), Amazon region (Brazil), Arabian 
peninsular, and Greenland. The testing was done for at least half a year of continuous data in each 
case. 

Figure 3a shows a case of cloud detection over receding snow for three winter days (36-37, 42) of 
2005 for the north-east USA. The area of the image is 600x600 km2. The two RGB images have a 
different normalization, helping visual distinction between snow and clouds. The MAIAC cloud 
mask is shown on the right, and the MODIS Collection 5 (MOD35) reprojected and gridded cloud 
mask is shown on the bottom. The conditions represent a different degree of cloudiness over the 
land. It is entirely clear on day 35. MAIAC CM algorithm gives an accurate overall classification. 
Thin ice on Lake Erie is partly misclassified as clouds. It is not as bright as snow in the visible 
bands, and has a higher than snow reflectance in the shortwave infrared (2.1 pm). The same holds 
true for the block of land and some pixels in the transitional zone from snow to land which are 
masked as clouds. As explained earlier, the error is expected in these cases. On day 36, MAIAC 
accurately detects a cloud stretching across Lake Erie. There are two large cloud systems on day 
42, in the left upper and left bottom parts of the image, captured well by the algorithm. These 
images also show the strong retreat of the snow line by day 42, and a high quality of snow 
mapping by MAIAC. The MOD35 product accurately detects clouds, but it also overestimates 
cloudiness over snow on all three days, with the highest error on day 37. 

Figure 3b compares the cloud mask of the two algorithms for the late spring of 2005 for the same 
region. Over land, the accuracy is similar. Some difference exists with regards to thin cirrus, or 
otherwise semitransparent clouds. MAIAC CM does not explicitly try to mask these clouds. 
Created for the purpose of aerosol retrievals and atmospheric correction, the algorithm maximizes 



the volume of data available for the atmospheric correction. Our study shows that achievable 
accuracy of surface reflectance retrievals through thin cirrus is sufficiently high [Lyapustin and 
Wang, 20071. Another notable difference is cloud detection over the water. One should bear in 
mind that the current algorithm has been developed for the land applications. Cloud detection over 
water at this stage is rudimentary, and presented examples may display a number of artifacts. 

A large-scale comparison of the cloud mask products for the Afiican Savannah (Zambia) is shown 
in Figure 4 for the area of 1200 km. This is the region of intense biomass burning later on during 
the dry season. The MAIAC and MOD35 cloud masks are generally comparable. MAIAC is a little 
more sensitive, detecting more clouds. One stark difference is the large number of "possibly clear" 
pixels in MOD35 when the algorithm cannot declare clear conditions with confidence. This 
category is not used in MAIAC, which has a very straightforward and reliable covariance criterion 
and ancillary refcm data to identify clear conditions. This feature is particularly appealing to land 
applications, sometimes significantly increasing the volume of measurements, which may be 
confidently used in the atmospheric correction and in hrther applied analysis. 

A final example of the cloud mask comparison for the large (1800 km) bright desert area of 
Arabian Peninsula is shown in Figure 5 for days 145 and 207 of 2005. Here, the MAIAC cloud 
mask is shown on the top of image, and the MOD35 product is shown on the bottom. Except for a 
few small differences, the products agree quite well for day 145. On day 207, MOD35 
overestimates cloudiness masking the dust storm areas as clouds. 

The new algorithm is demonstrating a high accuracy of cloud discrimination over land. 

5. Conclusions 

The cloud mask algorithm described here implements relatively simple and straightforward logic. 
Using covariance calculations, the algorithm has a reliable metric to identify cloud-free conditions 
at the block level, and to define the reference clear-skies image (refcm) of every block of the land 
surface. It works successfully over both dark and bright surfaces, including deserts and snow, as 
well as in both clear and hazy conditions. Dynamic updates of the reference clear skies image 
allows the CM algorithm to smoothly adjust to the seasonal surface variations. Rapid surface 
change events (fire burns, snow fall etc.) are accommodated through repetitive re-initialization of 
refcm. Keeping memory of the clear-skies image and of the essential statistical properties of 
reflectance and brightness temperature for every land surface block strongly enhances the 
probability for correct cloud detection in difficult cases. An internal dynamic land-water-snow 
classification is also very helphl as it permits adapting logic of cloud search as a hnction of 
surface type. 

Comparison with the MODIS Collection 5 cloud mask shows that M I A C  CM improves 
performance over snow and deserts. The accuracy of MAIAC CM and MOD35 over regular land 
surfaces is found to be similar. On the other hand, the MOD35 product often leaves some doubt 
for the land disciplines in a form of "possibly clear" pixels. When the high quality of input data is 
required, as in the MODIS BRDFIalbedo algorithm, such pixels are often discarded from 
processing thus noticeably reducing the volume of data. With a reliable criterion for identification 
of clear surface regions, the use of "possibly clear" category in MAIAC CM is no longer necessary. 

Variability of the footprint with the view zenith angle is one of largest sources of uncertainty in 
the time series cloud screening. Although our gridding algorithm reduces the resolution of MODIS 



500 m bands to 1 krn, it still cannot eliminate the resultant noise. In this sense, geostationary orbit 
would provide optimal performance conditions. 

The MAIAC CM algorithm is still a work in progress. We are not sure if the time series analysis 
may bring any advance in cloud detection over water, which lacks spatial variability. However, the 
use of refcm should help cloud detection over the in-land, especially shallow, waters, which may 
have strong seasonality. This part of the algorithm is yet to be developed. A global analysis is 
needed in order to fully optimize the spectral and brightness temperature tests. On the other hand, 
we will continue analysis of the information content of other MODIS channels to enhance refcm 
structure for better cloud discrimination in partly cloudy conditions. Interestingly, we found that 
the MODIS "cirrus" channel B26 (1.38 pm) does not add new information in our algorithm and 
thus it is not used in MAIAC cloud detection over land. 

MAIAC CM algorithm offers the potential to perform better than the MODIS MOD35 cloud mask 
in situations where the land surface is changing rapidly, and over Earth regions covered by snow 
and ice. The work has been initiated on the global inter-comparison of MAIAC and MOD35 cloud 
mask in collaboration with the University of Wisconsin. 
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APPENDIX 

A. Spectral Tests and Dynamic Surface Classification 

MAIAC algorithm maintains a dynamic land-water-snow mask (mask LWS) which guides the 
cloud mask algorithm and controls the path and selection of the surface BRF model during 
aerosol-surface reflectance retrievals. It also helps processing algorithms to adjust to surface 
changes, such as snow falyablation, flooding etc. It has three stable values (MASK-LAND, 
MASK-WATER, MASK-SNOW) and two transitional values used when surface change is detected 
(MASK-TO-LAND, MASK-TO-WATER). For example, value MASK-TO-LAND represents transition 
from snow or water to land. In this work, the term "land implies any land surface other than water 
or snow. In order to handle surface change, the algorithm uses a supporting mask indicating 
stability of state (mask Change) which has values of MASK-STABLE and MASK-CHANGE. The 
vegetation and water classification is performed at the pixel-level using binary logic, which is 
enforced by the BT-analysis. Because snow test does not necessarily distinguish between the 
snowlice clouds and the snow, the snow detection uses a different logic described in Sec. A.2. 

A.l Detection of Vegetation and Water 

When the new Tile is received, two tests are used to detect clear pixels and validate or change the 
status of mask mask-L WS: 

1. High NDVI test: ND VI=(r2 - rl)/(r2 + r1)>0.6, a CM-CLEAR. 

If the pixel passes this test, the value of cloud mask is set to CM-CLEAR. If the previous value of 
land-water-snow mask was MASK-LAND or MASKJO-LAND, then the value of mask is validated: 
mask LWS =MASK-LAND, mask-Change =MASK-STABLE. Otherwise, change is detected: 
mask3  ws =MASK-TO-LAND, mask-Change =MASK-CHANGE. 

This test finds heavily vegetated pixels of the land. Sparsely vegetated regions, bare soil, rocks, 
sand etc., are classified as land during covariance analysis, when the pixel is cloud-free, 
covariance at the block-level is high, and the pixel was not classified as either water or snow. 

2. Water test: ' r2<0.07 AND r5<0.02 AND r7<0.015 AND NDV110.2, CM-CLEAR-WATER. 

The water test is conducted only for the off-glint geometries, which are defined according to a 
condition rglint<0.02, where rglint is a Cox-Munk glint reflectance for the wind-ruffled water surface 
calculated at wind speed of 7 mls. Theoretical reflectance is pre-calculated using Nakajima and 
Tanaka (1983) model with the mutual shadowing of waves, and stored in the LUT. The algorithm 
can use a real time wind speed, if it becomes known operationally from independent sources. 

In the similar manner as above, the value MASK-WATER is either validated with the new 
measurement or change is detected if spectral tests find a signature of vegetation or soil. 

Different factors may lead to failure of the water test for a given pixel: elevated aerosol loading, 
clouds, transition to land (drying of shallow water, drainage) etc. For this reason, additional 
processing is performed for the pixels which were earlier classified as water (q. mask LWS 
=MASK-WATER) but did not pass the water test this time. First, the land-restore test (r5lr61.2) 
checks the possible transition to land. Next, the brightness temperature of water for the block 



(BTw), evaluated from the detected water pixels, is used either to confirm the clear water pixels, 
according to criteria: 

BT> BTP 1 K, AND r5< rglint t-0.03,- CM-CLEAR-WATER, 

or detect clouds if 

BT< BTTIK, AND r5> rg[int, - CM-CLOUD. 

If BTw is unavailable, the brightness temperature is compared to a fixed threshold: 
BT> 272.5K, AND r5< rglint +0.03, - CM-CLEAR-WATER. 

Last, the algorithm tests pixels of medium brightness, which may be the result of aerosols 
enhancing reflectance over the water: 

r1<0.12 AND Irl - r2/ < 0.015, 3 CM-CLEAR-WATER. 

A.2 Detection of Snow 

Snow detection begins with the snow test: 

3. Snow test: NDSI=(rk6)l(r4+r6)20.35 AND r1>0.15 AND r7<0.12. 

This test is performed for every pixel of the block if the maximal brightness temperature of the 
block and its nearest neighbors does not exceed 293K to avoid false snow detection on summer, 
and for the pixels inside the block with BT<283K over land or BT<275K over water. The 
temperature thresholds are high because snow-free patches of land surface can be very warm in 
spring, while the snow amount still being significant to warrant snow detection. The last condition 
(r7<0.12) serves to filter some of the mixed-phase clouds which are abundant and often have a 
higher reflectance at wavelength of 2.1 pm. The snow, as seen in MODIS channels, is usually 
darker than the specified threshold (r7~0.03-0.09), although fresh snow and some types of 
snowlice, which can be found for example on the high elevation slopes of Greenland, can be as 
bright as r7~0.15-0.20. The band 7 threshold also filters some pixels partially covered by snow. To 
classify these pixels as snow, we have a different mechanism, described later (Sec. B). 

Overall, snow detection is a difficult problem. First, snowlice clouds often pass the snow test so it 
alone cannot guarantee reliable snow detection. Second, snow in the mid-latitudes during winter is 
often short-lived, which gives rise to high variability of surface brightness in time and thus 
requires changing the logic of refcm update and of the overall use of the reference comparison 
target. Third, snow, partially covering the area of a pixel, is particularly difficult case and is often 
prone to misclassification as cloud. 

To filter clouds, which pass the snow test, we adopted a conservative approach by which the pixel 
can be masked as snow for the first time only during initialization or re-initialization of refcm. The 
requirement of high covariance and a carefully designed set of filters, described in sec. 2.1, for the 
most part help to separate clouds. For snow, we reduce the high covariance threshold to 0.65 in 
order to accommodate the transient nature of snow in mid-latitudes. When the high covariance 
conditions are satisfied, the cloud mask for the earlier Tile k, which had correlated with the last 
Tile, is reset to the value CM-CLEAR-SNOW. In this sense, the cloud mask of any given block of 
Tile may change anytime while the Tile remains in the Queue. This post-processing modification 
always increases the number of CM-CLEAR or CM-CLEAR-SNOW pixels. Once the snow is 



recorded at the Q-level (in q.Mask-L WS), the algorithm returns to the binary pixel-level logic of 
snow confirmation which is described in section B. 

The described conservative strategy, which requires two clear days in the Queue, may delay 
detection of fresh snow up until the high covariance with the later Tile is found, during which time 
it will be masked as clouds. On the other hand, it dramatically reduces misclassification of high 
clouds in mid-latitudes in the summer, and in tropical regions, although it cannot completely 
eliminate this error. In our limited testing, the new algorithm, despite being conservative, still 
finds significantly more clear snow pixels than the MODIS cloud mask algorithm (MOD35) which 
is known to overestimate cloudiness over snow. 

B.l Module CM-highCov 

This module is called when refcm is initialized and covariance between refcm and new Tile for a 
given block is high (cov > 0.68, or 0.65 for snow) indicating clear-skies conditions although a few 
pixels may still be cloudy. If the BT contrast is low, then all pixels of the block are masked as 
CM-CLEAR, the ground BT is calculated, and refcm is updated. If it exceeds a threshold of 
q.ABT+3, the algorithm masks possibly cloudy pixels that exceed the refcm reflectance and at the 
same time are colder than the ground brightness temperature with an offset: 

IF (BTU < BTG- 4) AND (rlV >refcm.rlij+0.05+dzj) 2 CM-PCLOUD. 

Dif is the difference between the average reflectance of the last Tile and of refcm over the 
common area of a given block. It is designed to remove bias caused by differences in the view 
geometry or aerosol concentration. The rest of pixels are masked as CM-CLEAR. If BTG remains 
undefined after spectral tests, it is first evaluated as a minimal value for 90% of the hottest pixels 
of the block using histogram analysis. 

In the presence of snow, which may change rapidly, comparison of reflectance is not helpful, and 
the logic changes. Our algorithm calculates the minimal brightness temperature of the block for 
90% of warmest pixels, which are assumed to be cloud-free, BTmin = mint BT(0.9) ) - 2O, and 
masks pixels which are colder than BTmin as CM-PCLOUD. The bright pixels of intermediate 
temperature between BTmin and 280K are masked as CM-CLEAR-SNOW, and the value of the 
q.mask - L WS is set to MASK-SNOW. The pixels, darker than 0.2, are masked as clear: 

IF r l i  >0.2 

{ IF BTij < BTmin OR BTij > 280 * CM-PCLOUD. 
ELSE 3 CM-CLEAR-SNOW, q.mask - L WSu= MASK-SNOW. 

1 
ELSE CM-CLEAR. 

Because the covariance is high, and a given block for both days is known from the snow test to 
have snow, the described procedure is a relatively safe way to introduce new snow pixels which 
did not pass snow test, and were not detected as snow before. As mentioned earlier, the snow test 
often misses partially covered snow pixels, which have relatively high reflectance in band 6 and 
are not so bright in band 4. It also misses some forms of snowlice with high reflectance in band 7 
(2.1 pm). Because covariance with thoroughly selected refcm image is high, thus introduced snow 
has a low commission error. 

B.2 Module CM-ZowCov 



This module is called when covariance is low (cov10.68) indicating that the block may be cloudy 
or partly clear. It starts with evaluation of BTG for a given block if it is undefined. The further 
processing depends whether or not the snow was detected before (at the Q-level). If not, then the 
algorithm uses the Bright-Cold algorithm to mask clouds: 

IF (BTv < BTG- 4) AND (rlv >refcm.rlii+0.05) CM-PCLOUD. 

In this case, the average brightness of the scene is not subtracted because it can be biased by 
clouds. 

When there is snow on the ground, the logic is reversed as compared to the case of high 
covariance. This algorithm does not add new snow: the pixel can be declared as CM-CLEAR-SNOW 
only if it satisfies three conditions: 1) it passes snow test, 2) snow was detected before 
(q.mask-LWS = MASK-SNOW), and 3) its reflectance is close to refcm value, 
r l ,  - refcm.rl,l i 0.05. The conservative last requirement, which assumes rather stable snow 

conditions, is essential because otherwise a significant number of snowlice clouds end up detected 
as snow. 

If one of three conditions is not satisfied, and the pixels's band 1 reflectance exceeds 0.12, it is 
masked as CM-CLOUD. For this reason, the darker surface partially covered by snow is often 
masked as cloud. This is a common error of comission typical of all snow detection algorithms. 



Table 1. MODIS Data Used in MAIAC CM Algorithm 

MODIS band kc (pm) Nadir resolution (km) Primary Use 

B1 0.645 0.5 Covariance analysis, refcm. 
LSC - Vegetation, Water. Land restore 
test. Thick bright cloud test. 

B2 0.856 0.5 LSC - Vegetation, Water. 

B3 0.466 0.5 Thick bright cloud test. 

B4 0.554 0.5 LSC - Snow. 

B5 1.242 0.5 Shadow detection. Land restore test. 

Thick bright cloud test. 

B6 1.629 0.5 LSC - Snow. 

B7 2.113 0.5 LSC - Vegetation, Water, Snow. 

B3 1 11.030 1. BT analysis, refcm. LSC. 

LSC - Land Surface Classification (land, water and snow). 



.l Clear VegNVater , v pixels? Get block's BTG, 
Spectral Tests '1 BTw 

I I 

Coldnhick Cloud Test 

4 Yes , , , [-E 
Calculate initialized? 

cov(refcm, new Tile) 

Yes 1 
Is cov HIGH? 

initRefcrn 
CM-highCov 

Is refcm CM-IowCov 
initialized? 

Figure 1. The general flowchart of CM algorithm. After spectral tests, the algorithm first tries to 
initialize the reference clear-skies image (refcm), and if fails then it uses a backup cloud mask 
algorithm (module cloudMask1). If refcm is available, the CM algorithm calculates covariance 
between the latest image and refcm, and carries on further analysis depending on whether 
covariance is high or low. In case of low covariance, the algorithm takes an intermediate step 
trying to re-initialize refcm, which takes care of rapid surface changes as well as of possible 
errors in refcm caused by previously undetected clouds. 
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Figure 2. Examples of performance of MAIAC CM algorithm for 50x50 km2 MODIS TERRA 
subsets for 2003, centered at GSFC, USA. Normalized gridded RGB images are shown on 
the left, cloud mask is shown on the right. CM legend: Blue and White - clear over land and 
snow, respectively; Red - cloudy. 





Figure 3a. Example of MAIAC and MOD35 (bottom) cloud mask over snow from MODIS 
TERRA data for days 36, 37 and 42 of 2005. The image shows 1 Tile (600x600 km2) for the 
north-east USA. The two RGB images have a different normalization helping visual 
distinction between snow and clouds. MOD35 cloud mask for days 36, 37 is shown at the 
bottom. Legend for MOD35 CM: Blue - clear, Green - possibly clear, Yellow - possibly 
cloudy, Red - cloudy. Legend for MAIAC CM: Blue, Light Blue, and White - clear (land, 
water and snow, respectively), Yellow - possibly cloudy, Red - cloudy. 

Figure 3b. Example of MAIAC (center) and MOD35 (right) cloud mask from MODIS TERRA 
data for days 138 (top) and 152 (bottom) of 2005. The image shows the same Tile (north-east 
USA) as in Figure 3a. 



Figure 4. Example of MAIAC (center) and MOD35 (right) cloud mask at the beginning of dry 
season for Zambia, Africa, from MODIS TERRA data for days 130 (top) and 141 (bottom) of 
2005. The image shows 4 Tiles (1200x1200 krn2). 



. Ove 
Cl0l 

Ove 
Cl0l 

:resl 
uds 

rest 
~ d s  

timated 

imated 

Figure 5. Example of MAIAC (top) and MOD35 (bottom) cloud mask for Arabian Peninsula from 
MODIS TERRA data for days 145 (left) and 207 (right) of 2005. The image shows 9 Tiles 
(1 8OOx 1800 km2). 




